Newer Diabetes Medications and Technologies

Lindsay Collins, MD
Objectives

• Introduce GLP1- RA and SGLT2 inhibitors

• Discuss the Cardiac and Renal Benefits of these Agents

• Review Adverse Events and Side Effects

• Interpret Continuous Glucose Sensor data
Development of Glucose Lowering Agents

Year

Animal Insulin

Sulfonylureas

Metformin

Human Insulin

Alpha-glucosidase Inhibitors

Insulin Analogues

Thiazolidinediones

DPP-4 Inhibitors

GLP-1 Receptor Agonists

Pramlintide

Inhaled Insulin

SGLT2 Inhibitors

Bromocriptine

Colesevelam

Inhaled Insulin

Kahn SE et al: Lancet 2014; 383 (9922)
FIRST-LINE therapy is metformin and comprehensive lifestyle (including weight management and physical activity). If HbA1c above target proceed as below:

Established ASCVD or CKD

ASCVD predominates
- GLP-1 RA with proven CVD benefit
- SGLT2i with proven CVD benefit, if eGFR adequate

If HbA1c above target:
- If further intensification is required or patient is now unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV safety:
 - Consider adding the other class (GLP-1 RA or SGLT2i) with proven CVD benefit
 - DPP-4i if not on GLP-1 RA
 - Basal insulin
 - TZD
 - SU

HF or CKD predominates
- PREFERABLY
 - SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate
 - OR
 - If SGLT2i not tolerated or contraindicated or if eGFR less than adequate, add GLP-1 RA with proven CVD benefit

If HbA1c above target:
- Avoid TZD in the setting of HF
 - Choose agents demonstrating CV safety:
 - Consider adding the other class with proven CVD benefit
 - DPP-4i (not saxagliptin) in the setting of HF (if not on GLP-1 RA)
 - Basal insulin
 - SU
Effects of Incretins

- Decreased appetite
- Increased satiety
- Decreased food intake
- Delayed gastric emptying
- Increased insulin secretion
- Decreased glucagon secretion
- Increased glucose uptake

GLP-1, GIP
Incretin Pathway

Active GLP-1

GLP-1 receptor

DPP

Inactive GLP-1
Dipeptidylpeptidase-4 Inhibitors

Active GLP-1

GLP-1 receptor

Inactive GLP-1

Sitagliptin
Saxagliptin
Linagliptin
Glucagon Like Peptide -1 Receptor Agonists

Active GLP-1

DPP

Inactive GLP-1

GLP-1 receptor
Glucagon Like Peptide -1 Receptor Agonists

Active GLP-1

DPP

Inactive GLP-1

Exenatide
dulaglutide
Liraglutide
Semaglutide

GLP-1 receptor
Differences in Incretin Therapies

<table>
<thead>
<tr>
<th>Properties/Effect</th>
<th>GLP-1 Receptor Agonists</th>
<th>DPP-4 Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Insulin production</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>↑ First-phase insulin response</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>↓ Glucagon</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>↓ Hepatic glucose output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric emptying</td>
<td>Delayed</td>
<td>No effect</td>
</tr>
<tr>
<td>Food intake</td>
<td>↓</td>
<td>No effect</td>
</tr>
<tr>
<td>Body weight</td>
<td>↓</td>
<td>No effect</td>
</tr>
<tr>
<td>Hypoglycemia (as monotherapy)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Nausea, vomiting</td>
<td>Minimal</td>
</tr>
<tr>
<td>↓A1c</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>
Why are GLP-1 Agonists Preferred in Patients with ASCVD?
Leader Trial

A Primary Outcome

- Hazard ratio, 0.87 (95% CI, 0.78–0.97)
- P<0.001 for noninferiority
- P=0.01 for superiority

B Death from Cardiovascular Causes

- Hazard ratio, 0.78 (95% CI, 0.66–0.93)
- P=0.007

Meta-analysis of CV Trials of GLP-1 RA: Reduction in MACE

What Effects do GLP-1 agonists have on the Kidneys?
Leader-Renal Trial

A Composite Renal Outcome

Hazard ratio, 0.78 (95% CI, 0.67–0.92)
P = 0.003

B New Onset of Persistent Macroalbuminuria

Hazard ratio, 0.74 (95% CI, 0.60–0.91)
P = 0.004

C Persistent Doubling of Serum Creatinine Level

Hazard ratio, 0.89 (95% CI, 0.67–1.19)
P = 0.43

D Continuous Renal-Replacement Therapy

Hazard ratio, 0.87 (95% CI, 0.61–1.24)
P = 0.44

Renal Outcomes in GLP1 RA in T2 DM

GLP-1 Agonist Summary

Disadvantages:
- Cost
- GI SE
- MTC; Pancreatitis

Advantages:
- Weight loss
- Cardiovascular Benefits
- Rare Hypoglycemia
Oral Semaglutide

Average Hgb A1c is 1% lower

Average weight loss 4.2kg

Husain M, et al. NEJM 2019; 381:841-851
Oral Semaglutide vs Subq Liraglutide

• Semaglutide 14mg PO vs Liraglutide 1.8mg subq

• Change in Hemoglobin A1c
 – Semaglutide: -1.2%
 – Liraglutide: -1.1%

• Weight Loss after 26 weeks
 – Semaglutide: -4.4kg
 – Liraglutide: -3.1 kg

MACE Oral Semaglutide

A. Composite Primary Outcome
- Hazard ratio, 0.79 (95% CI, 0.57–1.11)
- Oral semaglutide, 61 events
- Placebo, 76 events
- P<0.001 for noninferiority
- P=0.17 for superiority

B. Nonfatal Myocardial Infarction
- Hazard ratio, 1.18 (95% CI, 0.73–1.90)
- Oral semaglutide, 37 events
- Placebo, 31 events

C. Nonfatal Stroke
- Hazard ratio, 0.74 (95% CI, 0.35–1.57)
- Oral semaglutide, 12 events
- Placebo, 16 events

D. Death from Cardiovascular Causes
- Hazard ratio, 0.49 (95% CI, 0.27–0.92)
- Oral semaglutide, 15 events
- Placebo, 30 events

Husain M, et al. NEJM 2019; 381:841-851
SEMAGLUTIDE (RYBELSUS)

FDA APPROVED
GLP-1 Agonist Summary

Disadvantages
- Cost
- Injectable
- GI SE
- MTC; Pancreatitis

Advantages
- Weight loss
- Cardiovascular Benefits
- Rare Hypoglycemia
SGLT2 Inhibitors

- Empagliflozin
- Canagliflozin
- Dapagliflozin
SGLT-2 Inhibitors

Glucose \rightarrow SGLT-2 \rightarrow Reabsorption 90% \rightarrow SGLT-1

S1/S2 segments of proximal tubule
S3 segment of proximal tubule

Collecting duct

Glucosuria
Effect of Inhibiting SGLT2 on Renal Threshold for Glucose Excretion

Non-diabetes: ~ 180 mg/dl

Type 2 diabetes: ~ 250 mg/dl

SGLT2 inhibitor in type 2 diabetes: ~ 70-90 mg/dl
Glucose Reduction

SGLT2 Inhibitors Added to Metformin (Absolute Changes from Baseline; Not Head-to-Head Trials)

Baseline A1C (%)

Canagliflozin

7.8

Dapagliflozin

7.9

-0.52

Empagliflozin

7.9

-0.77

Δ A1C (%)
Why are SGLT2 inhibitors Preferred in Patients with ASCVD and HF?
Canvas Trial

A Primary Outcome

Hazard ratio, 0.86 (95% CI, 0.74–0.99)
P=0.04 for superiority

B Death from Cardiovascular Causes

Hazard ratio, 0.62 (95% CI, 0.49–0.77)
P<0.001

C Death from Any Cause

Hazard ratio, 0.68 (95% CI, 0.57–0.82)
P<0.001

D Hospitalization for Heart Failure

Hazard ratio, 0.65 (95% CI, 0.50–0.85)
P=0.002
Empa Reg Trial

A Primary Outcome

Hazard ratio, 0.86 (95% CI, 0.74–0.99)
P-value: 0.04 for superiority

B Death from Cardiovascular Causes

Hazard ratio, 0.62 (95% CI, 0.49–0.77)
P-value < 0.001

C Death from Any Cause

Hazard ratio, 0.68 (95% CI, 0.57–0.82)
P-value < 0.001

D Hospitalization for Heart Failure

Hazard ratio, 0.65 (95% CI, 0.50–0.85)
P-value: 0.002

No. at Risk

<table>
<thead>
<tr>
<th>Group</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empagliflozin</td>
<td>4687</td>
<td>4580</td>
<td>4455</td>
<td>4328</td>
<td>3851</td>
<td>2821</td>
<td>2359</td>
<td>1534</td>
<td>370</td>
</tr>
<tr>
<td>Placebo</td>
<td>2333</td>
<td>2256</td>
<td>2194</td>
<td>2112</td>
<td>1875</td>
<td>1380</td>
<td>1161</td>
<td>741</td>
<td>166</td>
</tr>
</tbody>
</table>

No. at Risk

<table>
<thead>
<tr>
<th>Group</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empagliflozin</td>
<td>4687</td>
<td>4651</td>
<td>4608</td>
<td>4556</td>
<td>4128</td>
<td>3079</td>
<td>2617</td>
<td>1722</td>
<td>414</td>
</tr>
<tr>
<td>Placebo</td>
<td>2333</td>
<td>2303</td>
<td>2280</td>
<td>2243</td>
<td>2012</td>
<td>1503</td>
<td>1281</td>
<td>825</td>
<td>177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empagliflozin</td>
<td>4687</td>
<td>4614</td>
<td>4523</td>
<td>4427</td>
<td>3988</td>
<td>2950</td>
<td>2487</td>
<td>1634</td>
<td>395</td>
</tr>
<tr>
<td>Placebo</td>
<td>2333</td>
<td>2271</td>
<td>2226</td>
<td>2173</td>
<td>1932</td>
<td>1424</td>
<td>1202</td>
<td>775</td>
<td>168</td>
</tr>
</tbody>
</table>
SGLT-2 Inhibitors Improve CV Outcomes: Meta-analysis

<table>
<thead>
<tr>
<th>Patients with atherosclerotic cardiovascular disease</th>
<th>Events</th>
<th>Events per 1000 patient-years</th>
<th>Weight (%)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>Placebo</td>
<td>Treatment</td>
<td>Placebo</td>
</tr>
<tr>
<td>EMPA-REG OUTCOME</td>
<td>4687</td>
<td>2333</td>
<td>772</td>
<td>37.4</td>
</tr>
<tr>
<td>CANVAS Program</td>
<td>3756</td>
<td>2900</td>
<td>796</td>
<td>34.1</td>
</tr>
<tr>
<td>DECLARE-TIMI 58</td>
<td>3474</td>
<td>3500</td>
<td>1020</td>
<td>36.8</td>
</tr>
</tbody>
</table>

Fixed effects model for atherosclerotic cardiovascular disease (p=0.0002)

<table>
<thead>
<tr>
<th>Patients with multiple risk factors</th>
<th>Events</th>
<th>Events per 1000 patient-years</th>
<th>Weight (%)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>Placebo</td>
<td>Treatment</td>
<td>Placebo</td>
</tr>
<tr>
<td>CANVAS Program</td>
<td>2039</td>
<td>1447</td>
<td>215</td>
<td>15.8</td>
</tr>
<tr>
<td>DECLARE-TIMI 58</td>
<td>5108</td>
<td>5078</td>
<td>539</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Fixed effects model for multiple risk factors (p=0.98)

Renal Outcomes

SGLT-2 Inhibitors

- Once daily oral dosing
 - ↓ A1c ~0.5-0.9%
 - ↓ FPG, PPG
 - ↓ Weight
 - ↓ BP
 - ↓ CHF
 - ↓ CHF Hospitalizations
 - ↓ Risk of ASCVD events
 - ↓ Decrease Renal Progression

- Dehydration
- Hypotension
- Mycotic Genital infections
- ↑ Risk of Amputations
- Diabetic ketoacidosis
- Cost/Insurance
Effects on Hemoglobin A1c

<table>
<thead>
<tr>
<th>GLP1 Agonists</th>
<th>SGLT2 Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semaglutide</td>
<td>Canagliflozin</td>
</tr>
<tr>
<td>Dulaglutide</td>
<td>Dapa</td>
</tr>
<tr>
<td>Liraglutide</td>
<td>Empagliflozin</td>
</tr>
<tr>
<td>Exenatide</td>
<td></td>
</tr>
</tbody>
</table>

ΔA1C (%)

Effects on Weight Loss

<table>
<thead>
<tr>
<th>GLP1 Agonists</th>
<th>SGLT2 Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semaglutide</td>
<td>Canagliflozin</td>
</tr>
<tr>
<td>Dulaglutide</td>
<td>Dapagliflozin</td>
</tr>
<tr>
<td>Liraglutide</td>
<td>Empagliflozin</td>
</tr>
<tr>
<td>Exemidine</td>
<td></td>
</tr>
</tbody>
</table>

Δ Weight (kg)

-5.8
-4
-2.6
-2.8
-2.0
-2.5
-4
-3.2

References:
FIRST-LINE therapy is metformin and comprehensive lifestyle (including weight management and physical activity) if HbA1c above target proceed as below.

If HbA1c above target:

ESTABLISHED ASCVD OR CKD

ASCVD PREDOMINATES

- **Either/Or**
 - GLP-1 RA with proven CVD benefit
 - SGLT2i with proven CVD benefit, if eGFR adequate

If further intensification is required or patient is now unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV safety:
- Consider adding the other class (GLP-1 RA or SGLT2i) with proven CVD benefit
- DPP-4i if not on GLP-1 RA
- Basal insulin
- TZD
- SU

HF OR CKD PREDOMINATES

PREFERABLY

- SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate

OR

- If SGLT2i not tolerated or contraindicated or if eGFR less than adequate add GLP-1 RA with proven CVD benefit

If HbA1c above target:

- Avoid TZD in the setting of HF
 - Choose agents demonstrating CV safety:
 - Consider adding the other class with proven CVD benefit
 - DPP-4i (not saxagliptin) in the setting of HF (if not on GLP-1 RA)
 - Basal insulin
 - SU
FIRST-LINE therapy is metformin and comprehensive lifestyle (including weight management and physical activity) if HbA1c above target proceed as below

No

Established ASCVD or CKD

ASCVD Predominates

HF or CKD Predominates

Either/Or

- GLP-1 RA with proven CVD benefit
- SGLT2i with proven CVD benefit

Preferably

- SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate
- GLP-1 RA with proven CVD benefit

If HbA1c above target

Without Established ASCVD or CKD

Compelling Need to Minimize Hypoglycemia

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i

If HbA1c above target

- SGLT2i
- GLP-1 RA
- DPP-4i
Continuous Glucose Sensors
Libre vs Dexcom

Type 2
- Affordable
- 14 day sensor
- Only connects with Iphone > 8
- No Alarms
- Less accurate with low gluoses

Type 1
- Alarms for highs and lows
- Reduces severe hypoglycemia
- Connects with Android, iphone or Apple Watch
- More Accurate
- Higher Cost
Who should get a Libre Sensor?

• FDA approval for adults with diabetes

• Any patient with T2 DM
 – Increase engagement
 – No more fingersticks
 – Education on diet and exercise effects

• Improves data for MDs to titrate diabetic regimen
How to Use Sensor Data?

Glucose

Estimated A1c 8.3%, or 67 mmol/mol

Average Glucose: 191 mg/dL

% above target: 84%
% in target: 15%
% below target: 1%

Graph showing average glucose levels over the day.
How to Use Sensor Data?

- **Glucose**
 - **Thu 19 Sep**: Average Glucose 199 mg/dL
 - **Fri 20 Sep**: Average Glucose 185 mg/dL
 - **Sat 21 Sep**: Average Glucose 197 mg/dL
Glucose

Estimated A1c 9.9%, or 85 mmol/mol

<table>
<thead>
<tr>
<th>AVERAGE GLUCOSE</th>
<th>237 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>% above target</td>
<td>64 %</td>
</tr>
<tr>
<td>% in target</td>
<td>29 %</td>
</tr>
<tr>
<td>% below target</td>
<td>7 %</td>
</tr>
</tbody>
</table>

LOW GLUCOSE EVENTS

- **5**
- Average duration **99 Min**

Sensor Usage

- **SENSOR DATA CAPTURED 95 %**
- Daily scans **8**

Average Glucose

- Median
- 10th to 90th Percentile

Low Glucose Events

- Graph showing glucose levels over time.
Conclusions

• Use SGLT2 Inhibitors or GLP1 agonists in patients with known ASCVD

• Consider SGLT2 inhibitors in patients with HF

• Try Freestyle Libre Sensor for patients with Type 2 diabetes